Rabu, 09 Agustus 2017
Modul I/O
Adalah interface atau central switch untuk mengendalikan satu atau lebih peripheral atau perangkat input output. Konektor mekanis berisi fungsi logik untuk komunikasi antara bus dan peripheral. Tidak hanya sekedar modul penghubung, tetapi sebuah piranti yang berisi logika dalam melakukan fungsi komunikasi antara peripheral dan bus computer.
Fungsi Utama :
1) Sebagaai piranti antarmuka ke CPU dan memori ke bus system
2) Sebagaai piranti antarmuka dengan peraalatan periperaal lainnyaa dengaan menggunakan link data tertentu
Fungsi Lain :
o Control dan timing
o Komunikasi CPU
- sebagai media komunikasi dari CPU menuju device eksternal
o Komunikasi perangkat
-sebagai media komunikasi dari device eksternal menuju CPU
o Data Buffering
-berfungsi sebagai penampung data sementara baik dari CPU/memori maupun dari peripheral peripheral
o Deteksi error
-berfungsi sebagai pendeteksi kesalahan yang ditimbulkan oleh device
Skema perangkat Peripheral :
Interface ke modul I/O adalah dalam bentuk signal-signal kontrol,status,dan data. Data berbentuk sekumpulan bit untuk dikirimkan ke modul I/O atau diterima dari modul I/O. control signal menentukan fungsi-fungsi yang akan dilakukan perangkat, seperti mengirimkan data ke modul I/O ( input atau read), menerima data dari modul I/O ( output / write), report status, atau membentuk fungsi kontrol tertentu ke perangkat ( misalnya, posisi head disk). signal status menandai status perangkat untuk mengirimkan data.
Control logic berkaitan dengan perangkat yang mengontrol operasi perangkat dalam memberikan respons yang berasal dari modul I/O. Transduser mengubah data dari energi listrik menjadi energi lain selama berlangsungnya output dan dari bentuk energi tertentu menjadi energi listrik selama berlangsungnya input. Umumnya, suatu buffer dikaitkan dengan transduser untuk menampung sementara data yang ditansfer diantara modul I/O dan dunia luar. Ukuran buffer yang umum adalah 8 hingga 16 bit.
Buffering
Tujuan utama buffering adalah mendapatkan penyesuaian data sehubungaan perbedaaan laaju transfer data dari perangkat periperaal dengan kecepatan pengolahan data CPU.
Umumnya buffering memiliki laju tranfer data dari perangkat peripheral lebih lambat dari kecepatan CPU maupun media penyimpanan. contoh nya sebuah file sedang diterima melalui modem dan ditujukan ke media penyimpanan di hard disk kecepatan modem tersebut kira-kira hanyalah 1/1000 dari pada hard disk. jadi buffer dibuat di dalam memori utama untuk mengumpulkan jumlah byte yang diterima dari modem.
Struktur Bus I/O
Saluran data
Saluran yang memberikan lintasan bagi perpindahan data antara dua modul system. Umumnya bus data terdiri dari 8,16,32 saluran, jumlah saluran dikaitkan dengan lebar bus data. Karena pada saat tertentu masing-masing saluran hanya dapat membawa 1 bit, maka jumlah saluran menentukan jumlah bit yang dapat dipindahkan pada saat tertentu. Lebar bus data merupakan factor penting dalam mentukan kinerja system secara keseluruhan. Bila bus data lebarnya 8 bit, dan setiap intruksinya dengan panjang 16 bit, maka CPU harus 2kali mengakses modul memori dalam setiap siklus intruksinya.
Saluran control
Bus control digunakan untuk mengontrol akses ke saluran alamat, penggunaan data dan saluran alamat. Karena data dan saluran alamat digunakan bersama oleh seluruh komponen, maka harus ada alat untuk mengontrol penggunaanya. Signal-signal control melakukan trasmisi baik perintah maupun informasi perwaktuan diantara modul-modul system.
Saluran alamat
Digunakan untuk menandakan sumber atau tujuan data pada bus data, misalnya CPU akan membaca sebuah word (8,16,32 bit ) data memori, maka CPU akan menaruh alamat word yang dimaksud pada saluran alamat. Lebar bus menentukan kapasitas memori maksimum system. Selain itu umumnya saluran alamat ini digunakan untuk memilih lokasi memori atau port I/O pada modul.
Terdapat berbagai macam modul I/O seiring perkembangan komputer itu sendiri, contoh yang sederhana dan fleksibel adalah Intel 8255A yang sering disebut PPI (Programmable Peripheral Interface). Bagaimanapun kompleksitas suatu modul I/O, terdapat kemiripan struktur, seperti terlihat pada gambar dibawah ini:
I/O Terproggram
Klasifikasi I/O terprogram
1. Perintah control.
Perintah ini digunkan untuk mengaktivasi perangkat peripheral dan memberitahukan tugas yang diperintahkan padanya.
2. Perintah test.
Perintah ini digunakan CPU untuk menguji berbagai kondisi status modul I/O dan peripheralnya. CPU perlu mengetahui perangkat peripheralnya dalam keadaan aktif dan siap digunakan, juga untuk mengetahui operasi – operasi I/O yang dijalankan serta mendeteksi kesalahannya.
3. Perintah read.
Perintah pada modul I/O untuk mengambil suatu paket data kemudian menaruh dalam buffer internal. Proses selanjutnya paket data dikirim melalui bus data setelah terjadi sinkronisasi data maupun kecepatan transfernya.
4. Perintah write.
Perintah ini kebalikan dari read. CPU memerintahkan modul I/O untuk mengambil data dari bus data untuk diberikan pada perangkat peripheral tujuan data tersebut.
Implementasai perintaah dalam intruksi I/O:
o Memory-Mapped I/O
• Terdapat ruang tunggal untuk lokasi memori daan perangkat I/O
• CPU memperlakukan register status dan register data modul I/O sebagai lokasi memori dan menggunakan intruksi mesin yang samauntuk mengakses baik memori ataupun perangkat I/o
• Konsekuensinya adalah diperlukan perangkat tunggaluntuk pembacaan dan saaluran tunggal untuk penulisan
• Keuntungan dari memory-mapped I/O adalah efisien daam pemrograman, namun memakan banyak ruang memory alamat
o Isolated I/O
• Dilakukan pemisahan ruang pengalamatan bagi memory dan ruang pengalamatan bagi I/O
• Dengan teknik ini diperlukan bus yang dilengkapi dengan saluran pembacaan dan penulisan memory ditambah saluran perintah output
• Kesulitan isolated I/O adalah sedikitnya intruksi I/O
Pengolahan interupsi saat perangkat I/O telah menyelesaikan sebuah operasi I/O adalah sebagai
berikut :
1. Perangkat I/O akan mengirimkan sinyal interupsi ke CPU.
2. CPU menyelesaikan operasi yang sedang dijalankannya kemudian merespon interupsi.
3.CPU memeriksa interupsi tersebut, kalau valid maka CPU akan mengirimkan sinyal acknowledgment ke perangkat I/O untuk menghentikan interupsinya.
Sumber Referensi :
(Cek Disini)
(Cek Disini)
Kamis, 20 Juli 2017
Windows Server 2008 adalah nama sistem operasi untuk server dari perusahaan Microsoft. Sistem server ini merupakan pengembangan dari versi sebelumnya yang disebut Windows Server 2003. Pada tanggal 15 Mei 2007, Bill Gates mengatakan pada konferensi WinHEC bahwa Windows Server 2008 adalah nama baru dari Windows Server "Longhorn".
Windows Server 2008 mendukung sistem klien dengan Windows Vista, mirip seperti hubungan antara Windows Server 2003 dan Windows XP. Versi Beta 1 dari sistem server ini pertama kali dikenalkan pada tanggal 27 Juli 2005, dan versi Beta 3-nya sudah diumumkan pada tanggal 25 April 2007 yang lalu. Produk ini rencananya akan dipasarkan pada pertengahan kedua tahun 2007 ini. Windows Server 2008 adalah nama sistem operasi untuk server dari perusahaan Microsoft. Sistem server ini merupakan pengembangan dari versi sebelumnya yang disebut Windows Server 2003. Windows Server 2008 dibangun dari kode yang sama seperti Windows Vista; karenanya Windows Server 2008 memiliki arsitektur dan fungsionalitas yang sama dengannya. Karena Windows Vista, oleh Microsoft, menawarkan kemajuan secara teknis dibandingkan dengan Windows versi sebelumnya, maka hal-hal yang dimiliki oleh Windows Vista juga dimiliki oleh Windows Server 2008. Contohnya adalah network stack yang ditulis lagi dari awal (IPv6, jaringan nirkabel, kecepatan, dan peningkatan keamanan); instalasi yang lebih mudah; diagnosa, pemantauan dan pencatatan yang lebih baik; keamanan yang lebih tangguh seperti BitLocker Drive Encryption, Address Space Layout Randomization (ASLR), Windows Firewall yang lebih baik; teknologi Microsoft .NET Framework 3.0, seperti Windows Communication Foundation, Microsoft Message Queuing (MSMQ), dan Windows Workflow Foundation (WFW), dan juga peningkatan pada sisi kernel.
Fitur - Fitur Windows Server 2008 :
1. Virtualization Hyper-V.
Adalah fasilitas virtualisasi yang sangat kuat dengan manajemen teknologi jaringan, memungkinkan untuk dilakukan proses virtualisasi dimana kecepatan virtualisasi hampir sama dengan sistem operasi yang tanpa virtualisasi.
2. Internet Information Services (ISS) 7
Adalah media baru dari WS 2008 yang dapat digunakan sebagai web server. Kemampuannya yang handal menyediakan design modular dan instalasi yang meningkatkan keamanan ketika menggunakan ISS 7.
3. Windows Server 2008 Server Core.
Fasilitas baru yang pastinya tidak pernah kita temukan pada WS 2000 dan 2003 sebelumnya. Fasilitas ini memungkinkan pengguna melakukan manajemen jaringan melalui Command-Line, dalam artian tanpa GUI. Dengan adanya Fasilitas tambahan ini, dapat meminimalisir proses kerja Sistem.
4. Server Manager.
Layanan modeling language platform digunakan untuk mempermudah admin jaringan dalam melakukan instalasi, konfigurasi, dan penghapusan role. Dengan adanya fitur ini, akan mempermudah dan merampingkan common server dalam melakukan konfigurasi pada jendela yang terbuka.
5. Read Only Domain Controller (RODC).
Merupakan fasilitas yang dirancang untuk keamanan pada domain controller, memungkinkan pengguna melakukan pengaturan walaupun dalam sebuah jaringan client server skala kecil. RODC memungkinkan melakukan pengaksesan dengan batasan perizinan yang akan didelegasikan kepada pengguna lokal, untuk mengelola RODC tanpa memberikan tambahan izin pada domain.
6. Network Access Protection (NAP).
Fitur ini memberikan keamanan dalam manajemen komputer client server, serta mempunyai komponen dan layanan yang mencegah pengakses komputer dalam suatu organisasi jaringan.
7. Windows Deloyment Service (WDS).
Merupakan remove virtualisasi, dimana dalam proses instalasi sistem operasi dapat dijalankan dengan remot kontrol di jaringan secara bersama-sama.
Selasa, 13 Juni 2017
PENGERTIAN MEMORY
Sistem memori adalah komponen-komponen elektronik yang perintah - perintah yang menunggu untuk di eksekusi oleh prosesor, data yang diperlukan oleh instruksi ( perintah ) tersebut dan hasil-hasil dari data yang diproses ( informasi ).
Memori biasanya terdiri atas satu chip atau beberapa papan sirkuit lainnya dalam prosesor. Memori komputer bisa diibaratkan sebagai papan tulis, dimana setiap orang yang masuk kedalam ruangan bisa membaca dan memanfaatkan data yang ada dengan tanpa merubah susunan yang tersaji.
Data yang diproses oleh komputer, sebenarnya masih tersimpan didalam memori, dan dalam hal ini komputer hanya membaca data dan kemudian memprosesnya. Satu kali data tersimpan didalam memori komputer, maka data tersebut akan tetap tinggal disitu selamanya. Setiap kali memori penuh, maka data yang ada bisa dihapus sebagian ataupun seluruhnya untuk diganti dengan data yang baru.
KARAKTERISTIK MEMORI
Ada 7 karakteristik sistem memori secara umum:
1. Lokasi
2. Kapasitas
3. Satuan Transfer
4. Metode Akses
5. Kinerja
6. Tipe Fisik
7. Karakteristik Fisik
1. Lokasi
Ada 3 lokasi keberadaan memori dalam sistem komputer:
- CPU
Memori ini built-in berada dalam CPU ( Mikroprosesor ) dan diperlukan untuk semua kegiatan CPU, memori ini disebut register. Register digunakan sebagai memori sementara dalam perhitungan maupun pengolahan data dalam prosesor.
- Internal
Memori ini berada di luar chip processor tetapi bersifat internal terhadap sistem komputer dan diperlukan oleh CPU untuk proses eksekusi (operasi) program, hingga dapat diakses secara langsung oleh prosesor (CPU) tanpa modul perantara. Memori internal sering juga disebut sebagai memori primer atau memori utama. Memori internal biasanya menggunakan media RAM.
- External
Memori ini bersifat eksternal terhadap sistem komputer dan tentu saja berada di luar CPU dan diperlukan untuk menyimpan data atau instruksi secara permanen. Memori ini, tidak diperlukan di dalam proses eksekusi sehingga tidak dapat diakses secara langsung oleh prosesor (CPU). Untuk akses memori eksternal ini oleh CPU harus melalui pengontrol/modul I/O. Memori eksternal sering juga disebut sebagai memori sekunder. Memori ini terdiri atas perangkat storage peripheral seperti : disk, pita magnetik.
2. Kapasitas
2. Erasable dan Non-Erasable
HIRARKI MEMORY
1. Hirarki Memori
Sistem memori adalah komponen-komponen elektronik yang perintah - perintah yang menunggu untuk di eksekusi oleh prosesor, data yang diperlukan oleh instruksi ( perintah ) tersebut dan hasil-hasil dari data yang diproses ( informasi ).
Memori biasanya terdiri atas satu chip atau beberapa papan sirkuit lainnya dalam prosesor. Memori komputer bisa diibaratkan sebagai papan tulis, dimana setiap orang yang masuk kedalam ruangan bisa membaca dan memanfaatkan data yang ada dengan tanpa merubah susunan yang tersaji.
Data yang diproses oleh komputer, sebenarnya masih tersimpan didalam memori, dan dalam hal ini komputer hanya membaca data dan kemudian memprosesnya. Satu kali data tersimpan didalam memori komputer, maka data tersebut akan tetap tinggal disitu selamanya. Setiap kali memori penuh, maka data yang ada bisa dihapus sebagian ataupun seluruhnya untuk diganti dengan data yang baru.
KARAKTERISTIK MEMORI
Ada 7 karakteristik sistem memori secara umum:
1. Lokasi
2. Kapasitas
3. Satuan Transfer
4. Metode Akses
5. Kinerja
6. Tipe Fisik
7. Karakteristik Fisik
1. Lokasi
Ada 3 lokasi keberadaan memori dalam sistem komputer:
- CPU
Memori ini built-in berada dalam CPU ( Mikroprosesor ) dan diperlukan untuk semua kegiatan CPU, memori ini disebut register. Register digunakan sebagai memori sementara dalam perhitungan maupun pengolahan data dalam prosesor.
- Internal
Memori ini berada di luar chip processor tetapi bersifat internal terhadap sistem komputer dan diperlukan oleh CPU untuk proses eksekusi (operasi) program, hingga dapat diakses secara langsung oleh prosesor (CPU) tanpa modul perantara. Memori internal sering juga disebut sebagai memori primer atau memori utama. Memori internal biasanya menggunakan media RAM.
- External
Memori ini bersifat eksternal terhadap sistem komputer dan tentu saja berada di luar CPU dan diperlukan untuk menyimpan data atau instruksi secara permanen. Memori ini, tidak diperlukan di dalam proses eksekusi sehingga tidak dapat diakses secara langsung oleh prosesor (CPU). Untuk akses memori eksternal ini oleh CPU harus melalui pengontrol/modul I/O. Memori eksternal sering juga disebut sebagai memori sekunder. Memori ini terdiri atas perangkat storage peripheral seperti : disk, pita magnetik.
2. Kapasitas
- Ukuran word
Kapasitas memori internal maupun eksternal biasanya dinyatakan dalam bentuk byte (1 byte = 8 bit) atau word.
- Jumlah word
Panjang word umumnya 8, 16, 32 bit.
Kapasitas memori internal maupun eksternal biasanya dinyatakan dalam bentuk byte (1 byte = 8 bit) atau word.
- Jumlah word
Panjang word umumnya 8, 16, 32 bit.
3. Satuan Transfer
- Word
Merupakan satuan “alami” organisasi memori. Ukuran word biasanya sama dengan jumlah bit yang digunakan untuk representasi bilangan dan panjang instruksi.
- Block
Adalah jumlah bit yang dibaca atau dituliskan ke dalam memori pada suatu saat. Pada memori eksternal, tranfer data biasanya lebih besar dari suatu word
- Addressable units
Pada sejumlah sistem, adressable units adalah word. Namun terdapat sistem dengan pengalamatan pada tingkatan byte. Pada semua kasus hubungan antara panjang A suatu alamat dan jumlah N adressable unit adalah 2A =N.
- Unit of tranfer
Adalah jumlah bit yang dibaca atau dituliskan ke dalam memori pada suatu saat. Pada memori eksternal, tranfer data biasanya lebih besar dari suatu word, yang disebut dengan block.
4. Metode Akses
4 jenis pengaksesan satuan daya, yaitu:
1. Sequensial Access
Memori diorganisasikan menjadi unit-unit data, yang disebut record. Aksesnya dibuat dalam bentuk urutan linier yang spesifik. Informasi pengalamatan dipakai untuk memisahkan record-record dan untuk membantu proses pencarian. Mekanisme baca/tulis digunakan secara bersama (shared read/write mechanism), dengan cara berjalan menuju lokasi yang diinginkan untuk mengeluarkan record. Waktu access record sangat bervariasi. Contoh sequential access adalah akses pada pita magnetik.
2. Direct Access
Seperti sequential access, direct access juga menggunaka shared read/write mechanism, tetapi setiap blok dan record memiliki alamat yang unik berdasarkan lokasi fisik. Aksesnya dilakukan secara langsung terhadap kisaran umum (general vicinity) untuk mencapai lokasi akhir. Waktu aksesnya pun bervariasi. Contoh direct access adalah akses pada disk.
3. Random Access
Setiap lokasi dapat dipilih secara random dan diakses serta dialamati secara langsung. Waktu untuk mengakses lokasi tertentu tidak tergantung pada urutan akses sebelumnya dan bersifat konstan. Contoh random access adalah sistem memori utama.
4. Assosiative Access
Setiap word dapat dicari berdasarkan pada isinya dan bukan berdasarkan alamatnya. Seperti pada RAM, setiap lokasi memiliki mekanisme pengalamatannya sendiri. Waktu pencariannya pun tidak bergantung secara konstan terhadap lokasi atau pola access sebelumnya. Contoh associative access adalah memori cache.
5. Kinerja
3 parameter untuk kinerja sistem memori, yaitu :
- Access time (Waktu Akses)
Bagi RAM, waktu akses adalah waktu yang dibutuhkan untuk melakukan operasi baca atau tulis. Sedangkan bagi non RAM, waktu akses adalah waktu yang dibutuhkan untuk melakukan mekanisme baca tulis pada lokasi tertentu.
- Cycle time (Waktu Siklus)
Waktu siklus adalah waktu akses ditambah dengan waktu transien hingga sinyal hilang dari saluran sinyal atau untuk menghasilkan kembali data bila data ini dibaca secara destruktif.
- Transfer rate (Laju Pemindahan)
Transfer rate adalah kecepatan pemindahan data ke unit memori atau ditransfer dari unit memori. Bagi RAM, transfer rate sama dengan 1/(waktu siklus). Sedangkan, bagi non-RAM, berlaku persamaan sbb:
TN = Waktu rata-rata untuk membaca / menulis sejumlah N bit. TA = Waktu akses rata-rata
N = Jumlah bit
R = Kecepatan transfer, dalam bit per detik (bps)
6. Tipe Fisik
1. Semi Konduktor
Memori ini memakai teknologi LSI atau VLSI (very large scale integration). Memori ini banyak digunakan untuk memori internal misalnya RAM.
2. Magnetic
Memori ini banyak digunakan untuk memori eksternal yaitu untuk disk atau pita magnetik.
7. Karakteristik Fisik
1. Volatile dan Non-Volatile
Pada memori volatile, informasi akan rusak secara alami atau hilang bila daya listriknya dimatikan. Selain itu, pada memori non-volatile, sekali informasi direkam akan tetap berada di sana tanpa mengalami kerusakan sebelum dilakukan perubahan. Pada memori ini daya listrik tidak diperlukan untuk mempertahankan informasi tersebut. Memori permukaan magnetik adalah non volatile. Memori semikonduktor dapat berupa volatile atau non volatile.
Erasable artinya isi memori dapat dihapus dan diganti dengan informasi lain. Memori semikonduktor yang tidak terhapuskan dan non volatile adalah ROM.
HIRARKI MEMORY
1. Hirarki Memori
Tiga pertanyaan dalam rancangan memori, yaitu : Berapa banyak? Hal ini menyangkut kaspasitas. Berapa cepat? Hal ini menyangkut waktu akses, dan berapa mahal yang menyangkut harga? Setiap spektrum teknologi mempunyai hubungan sbb:
- Semakin kecil waktu access, semakin besar harga per bit.
- Semakin besar kapasitas, semakin kecil harga per bit.
- Semakin besar kapasitas, semakin besar waktu access.
Untuk mendapatkan kinerja terbaik, memori harus mampu mengikuti CPU. Artinya apabila CPU sedang mengeksekusi instruksi, kita tidak perlu menghentikan CPU untuk menunggu datangnya instruksi atau operand. Sedangkan untuk mendapatkan kinerja terbaik, memori menjadi mahal, berkasitas relatif rendah, dan waktu access yang cepat.
Untuk memperoleh kinerja yang optimal, perlu kombinasi teknologi komponen memori. Dari kombinasi ini dapat disusun hirarki memori sebagai berikut:
Semakin menurun hirarki, maka hal-hal di bawah ini akan terjadi:
a) Penurunan harga per bit
b) Peningkatan kapasitas
c) Peningkatan waktu akses
d) Penurunan frekuensi akses memori oleh CPU.
Kunci keberhasilan hirarki ini pada penurunan frekuensi aksesnya. Semakin lambat memori maka keperluan CPU untuk mengaksesnya semakin sedikit. Secara keseluruhan sistem komputer akan tetap cepat namun kebutuhan kapasitas memori besar terpenuhi.
TEKNOLOGI DAN BIAYA SISTEM MEMORY
2 teknologi yang mendominasi industri memori sentral dan memori utama, yaitu :
1. Memori Magnetic Core (tahun 1960)
Sel penyimpanan yang ada dalam memori inti dibuat dari elemen besi yang berbentuk donat yang disebut magnetic core (inti magnetis) atau hanya disebut core saja. Para pembuat(pabrikan) yang membuat core ini menyusun core plane bersama dengan sirkuit lain yang diperlukan, menjadi memori banks (bank memori)
2. Memory Solid State
Komputer yang pertama diproduksi untuk tujuan komersil adaalah UNIVAC dimana :
• CPU nya menggunakan teknologi vacuum tube (tabung hampa udara) dan menjalankan aritmatika decimal.
• Memori utamanya 1000 word (setiap word besarnya 60 bit dan menyimpan 12 karakter 5 bit)
ORGANISASI MEMORY
Yang dimaksud dengan organisasi adalah pengaturan bit dalam menyusun word secara fisik.
• Salah satunya adalah menggunakan Inteleaving dimana tujuannya adalah untuk meningkatkan kecepatan pengaksesan sistem penyimpanan yang besar.
• Sistem penyimpanan yang besar terdiri atas beberapa bank memori independent yang diakses oleh CPU dan peralatan I/O melalui pengontrolan port memori Contoh : Cross bar switch Sistem penyimpanan menggunakan Interleave High Order
• Setiap bank (penyimpanan) berisi blok alamat yang berurutan.
• Setiap peralatan, termasuk CPU, menggunakan bank memori yang berbeda untuk program dan datanya, maka semua bank dapat mentransfer data secara serentak. Sistem penyimpanan menggunakan Interleave Low Order
• Alamat yang berurutan berada dalam bank yang terpisah, sehingga setiap peralatan perlu mengakses semua bank selagi menjalankan programnya atau mentransfer data. Contohnya : suatu siklus memori lebih lama daripada waktu siklus CPU.
• Apabila word yang berurutan berada dalam bank yang berbeda, maka system penyimpanan bila dilengkapi dengan putaran yang cocok dapat melengkapi akses memori yang berurutan, dengan kata lain setelah CPU meminta untuk mengakses word pertama yang disimpan dalam salah satu bank, maka ia dapat bergerak ke bank kedua dan mengawali akses word kedua sementara penyimpanan tetap mendapatkan kembali word pertama sementara penyimpanan tetap mendapatkan kembali word pertama. Pada CPU kembali ke bank pertama, system penyimpanan diharapkan telah menyelesaikan mengakses word pertama dan telah siap mengakses lagi.
• Banyak komputer berkinerja tinggi menggunakan Interleave Low Order
SISTEM MEMORY UTAMA
• Tahun 1960-an para programmer sistem mengembangkan sistem pengoperasian multiprogramming, yang memanfaatkan atau menggunakan memori utama yang sangat besar.
• Komputer yang hanya mempunyai satu system memori utama dikatakan mempunyai one-level strorage system (system penyimpanan tingkat satu)
• Komputer yang mempunyai memori virtual menggunakan multilevel storage system (system penyimpanan bertingkat)
• Penyimpanan multilevel mempunyai memori sentral(internal) yaitu memori utama dan register CPU sebagai primary memori dan peralatan penyimpanan eksternal seperti hardisk dan disket sebagai secondary memori memori sekunder.
RELOKASI PEMROGRAMAN DAN PROTEKSI MEMORY
Multiprogramming adalah cara yang tepat untuk meningkatkan kegunaan CPU dengan cara memungkinkan beberapa tugas berada dalam memori pada waktu yang bersamaan. Berhasilnya multiprogramming ditentukan antara lain oleh :
o Relokasi Program Dengan cara menmpatkan program dimana saja dalam memori Initial Program Relocation (Relokasi Program Awal) adalah proses merelokasi program tempat system pengoperasian pertama kali. Dynamic Program Relocation (Relokasi Program Dinamis) adalah system pengoperasian dapat memindahkan program dari suatu tempat ke tempat yang lain dalam memori utama setelah program dijalankan.
o Proteksi Program Mencegah suatu program mengakses memori yang telah diberikan oleh system pengoperasian ke program yang lain. Contoh relokasi program dan proteksi adalah IBM System/360 dan CDC 6600 IBM System/360 Menggunakan Register Base untuk merelokasi program Menggunakan relokasi program awal Menggunakan key-controlled memori protection untuk proteksi memori. CDC 6600 Mempunyai register khusus yaitu Relocation Address (RA/Register Alamat Relokasi) untuk merelokasi program. Menggunakan relokasi program awal.
PENGERTIAN MEMORI SEMI KONDUKTOR
Memori Semikonduktor adalah perangkat penyimpanan data-data elektronik yang terbuat dari bahan semikonduktor.
Memori Semikonduktor ini merupakan komponen penting dalam perkembangan perangkat-perangkat elektronik saat ini, umumnya digunakan sebagai memori komputer, memori pada Smartphone, USB drive dan bahkan di Televisi-televisi pintar (Smart TV) dan Jam Tangan pintar (Smart Watch). Memori Semikonduktor ini umumnya berbentuk IC (Intragrated Circuit).
Kebanyakan Memori Semikonduktor memiliki sifat Random Access (akses acak) yang datanya dapat diakses dalam waktu yang tetap namun tidak mempedulikan lokasi letak data tersebut dalam memori. Dengan adanya Sifat Akses Acak atau Random Access ini, Memori Semikonduktor dapat lebih efisien dalam mengakses data baik dalam penyimpanan maupun pencarian data. Hal ini sangat berbeda dengan perangkat memori yang bersifat Memori Urut seperti Compact Disk (CD) dan Tape Magnetik. Memori Urut hanya dapat mengakses data secara berurutan karena batasan gerakan mekanikal dari media penyimpanannya yang mengharuskan pengaksesan data secara berurutan. Dengan demikian waktu akses Perangkat Memori Urut ini menjadi lebih lama dari memori semikonduktor yang memiliki sifat Random Access ini.
Secara umum, waktu akses satu byte pada Memori Semikonduktor adalah dalam hitungan beberapa nanodetik sedangkan waktu akses satu byte pada Hard disk adalah dalam kisaran milidetik. Oleh karena itu, Memori Semikonduktor sering digunakan sebagai Memori Utama (Primary Storage) pada Komputer.
Dalam sebuah Chip Memori Semikonduktor, setiap Bit data biner disimpan dalam sirkuit kecil yang disebut dengan Sel Memori. Sel Memori tersebut terdiri dari satu hingga beberapa Transistor. Sel-sel Memori diletakan dalam Array persegi panjang pada permukaan Chip. Sel-sel Memori 1 bit dikelompokan dalam satuan kecil yang disebut dengan “Kata” yang diakses bersama-sama sebagai alamat memori tunggal. Memori yang dihasilkan untuk kepanjangan Kata adalah berdasarkan kelipatan 2 seperti 1, 2, 4 dan 8 bit.
JENIS JENIS PENGALAMATAN (ADDRESSING)
1. Direct Addressing (Pengalamatan Langsung)
Suatu proses penyalinan data pada register dan suatu alamat efektif (Effective Address, Alamat ini disimpan pada byte berikut setelah opcode instruksi). Dalam mode pengalamatan direct addressing, harga yang akan dipakai diambil langsung dalam alamat memori lain. Contohnya: MOV A,30h. Dalam instruksi ini akan dibaca data dari RAM internal dengan alamat 30h dan kemudian disimpan dalam akumulator. Mode pengalamatan ini cukup cepat, meskipun harga yang didapat tidak langsung seperti immediate, namun cukup cepat karena disimpan dalam RAM internal. Demikian pula akan lebih mudah menggunakan mode ini daripada mode immediate karena harga yang didapat bisa dari lokasi memori yang mungkin variabel.
Kelebihan :
Field alamat berisi efektif address sebuah operand
Kekurangan :
Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word
Contoh :
ADD A ; tambahkan isi pada lokasi alamat A ke akumulator.
2. Indirect Addressing (Pengalamatan tak langsung)
Merupakan mode pengalamatan tak langsung. Field alamat mengacu pada alamat word di dalam memori, yang pada gilirannya akan berisi alamat operand yang panjang atau untuk mentransfer DATA/byte/word antar register dan lokasi yang alamatnya ditunjukkan oleh isi suatu register. Mode pengalamatan indirect addressing sangat berguna karena dapat memberikan fleksibilitas tinggi dalam mengalamati suatu harga. Mode ini pula satu-satunya cara untuk mengakses 128 byte lebih dari RAM internal pada keluarga 8052. Contoh: MOV A, @R0. Dalam instruksi tersebut, 89C51 akan mengambil harga yang berada pada alamat memori yang ditunjukkan oleh isi dari R0 dan kemudian mengisikannya ke akumulator. Mode pengalamatan indirect addressing selalu merujuk pada RAM internal dan tidak pernah merujuk pada SFR. Karena itu, menggunakan mode ini untuk mengalamati alamat lebih dari 7Fh hanya digunakan untuk keluarga 8052 yang memiliki 256 byte spasi RAM internal.
Kelebihan :
Ruang bagi alamat menjadi besar sehingga semakin banyak alamat yang dapat referensi.
Kekurangan :
Diperlukan referensi memori ganda dalam satu fetch sehingga memperlambat proses operasi
Contoh :
ADD (A) ; tambahkan isi memori yang ditunjuk oleh isi alamat A ke akumulator.
3. Immediate Addressing (Pengalamatan Segera)
Suatu proses penyalinan data yang berukuran byte atau word langsung ke dalam register tujuan. Data yang dimaksud di sini adalah suatu nilai atau bilangan tertentu atau bisa juga berupa sebuah konstanta (didefinisikan dengan instruksi EQU). Data segera merupakan data konstan, sedangkan data yang dipindahkan dari register adalah data berubah (variable). Mode pengalamatan immediate addressing sangat umum dipakai karena harga yang akan disimpan dalam memori langsung mengikuti kode operasi dalam memori. Dengan kata lain, tidak diperlukan pengambilan harga dari alamat lain untuk disimpan. Contohnya: MOV A, #20h. Dalam instruksi tersebut, akumulator akan diisi dengan harga yang langsung mengikutinya, dalam hal ini 20h. Mode ini sangatlah cepat karena harga yang dipakai langsung tersedia.
Keuntungan :
Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand
Menghemat siklus instruksi sehingga proses keseluruhanakan akan cepat
Kekurangan :
· Ukuran bilangan dibatasi oleh ukuran field
Contoh :
ADD 7 ; tambahkan 7 pada akumulator
Memori Semikonduktor adalah perangkat penyimpanan data-data elektronik yang terbuat dari bahan semikonduktor.
Memori Semikonduktor ini merupakan komponen penting dalam perkembangan perangkat-perangkat elektronik saat ini, umumnya digunakan sebagai memori komputer, memori pada Smartphone, USB drive dan bahkan di Televisi-televisi pintar (Smart TV) dan Jam Tangan pintar (Smart Watch). Memori Semikonduktor ini umumnya berbentuk IC (Intragrated Circuit).
Kebanyakan Memori Semikonduktor memiliki sifat Random Access (akses acak) yang datanya dapat diakses dalam waktu yang tetap namun tidak mempedulikan lokasi letak data tersebut dalam memori. Dengan adanya Sifat Akses Acak atau Random Access ini, Memori Semikonduktor dapat lebih efisien dalam mengakses data baik dalam penyimpanan maupun pencarian data. Hal ini sangat berbeda dengan perangkat memori yang bersifat Memori Urut seperti Compact Disk (CD) dan Tape Magnetik. Memori Urut hanya dapat mengakses data secara berurutan karena batasan gerakan mekanikal dari media penyimpanannya yang mengharuskan pengaksesan data secara berurutan. Dengan demikian waktu akses Perangkat Memori Urut ini menjadi lebih lama dari memori semikonduktor yang memiliki sifat Random Access ini.
Secara umum, waktu akses satu byte pada Memori Semikonduktor adalah dalam hitungan beberapa nanodetik sedangkan waktu akses satu byte pada Hard disk adalah dalam kisaran milidetik. Oleh karena itu, Memori Semikonduktor sering digunakan sebagai Memori Utama (Primary Storage) pada Komputer.
Dalam sebuah Chip Memori Semikonduktor, setiap Bit data biner disimpan dalam sirkuit kecil yang disebut dengan Sel Memori. Sel Memori tersebut terdiri dari satu hingga beberapa Transistor. Sel-sel Memori diletakan dalam Array persegi panjang pada permukaan Chip. Sel-sel Memori 1 bit dikelompokan dalam satuan kecil yang disebut dengan “Kata” yang diakses bersama-sama sebagai alamat memori tunggal. Memori yang dihasilkan untuk kepanjangan Kata adalah berdasarkan kelipatan 2 seperti 1, 2, 4 dan 8 bit.
JENIS JENIS PENGALAMATAN (ADDRESSING)
1. Direct Addressing (Pengalamatan Langsung)
Suatu proses penyalinan data pada register dan suatu alamat efektif (Effective Address, Alamat ini disimpan pada byte berikut setelah opcode instruksi). Dalam mode pengalamatan direct addressing, harga yang akan dipakai diambil langsung dalam alamat memori lain. Contohnya: MOV A,30h. Dalam instruksi ini akan dibaca data dari RAM internal dengan alamat 30h dan kemudian disimpan dalam akumulator. Mode pengalamatan ini cukup cepat, meskipun harga yang didapat tidak langsung seperti immediate, namun cukup cepat karena disimpan dalam RAM internal. Demikian pula akan lebih mudah menggunakan mode ini daripada mode immediate karena harga yang didapat bisa dari lokasi memori yang mungkin variabel.
Kelebihan :
Field alamat berisi efektif address sebuah operand
Kekurangan :
Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word
Contoh :
ADD A ; tambahkan isi pada lokasi alamat A ke akumulator.
2. Indirect Addressing (Pengalamatan tak langsung)
Merupakan mode pengalamatan tak langsung. Field alamat mengacu pada alamat word di dalam memori, yang pada gilirannya akan berisi alamat operand yang panjang atau untuk mentransfer DATA/byte/word antar register dan lokasi yang alamatnya ditunjukkan oleh isi suatu register. Mode pengalamatan indirect addressing sangat berguna karena dapat memberikan fleksibilitas tinggi dalam mengalamati suatu harga. Mode ini pula satu-satunya cara untuk mengakses 128 byte lebih dari RAM internal pada keluarga 8052. Contoh: MOV A, @R0. Dalam instruksi tersebut, 89C51 akan mengambil harga yang berada pada alamat memori yang ditunjukkan oleh isi dari R0 dan kemudian mengisikannya ke akumulator. Mode pengalamatan indirect addressing selalu merujuk pada RAM internal dan tidak pernah merujuk pada SFR. Karena itu, menggunakan mode ini untuk mengalamati alamat lebih dari 7Fh hanya digunakan untuk keluarga 8052 yang memiliki 256 byte spasi RAM internal.
Kelebihan :
Ruang bagi alamat menjadi besar sehingga semakin banyak alamat yang dapat referensi.
Kekurangan :
Diperlukan referensi memori ganda dalam satu fetch sehingga memperlambat proses operasi
Contoh :
ADD (A) ; tambahkan isi memori yang ditunjuk oleh isi alamat A ke akumulator.
3. Immediate Addressing (Pengalamatan Segera)
Suatu proses penyalinan data yang berukuran byte atau word langsung ke dalam register tujuan. Data yang dimaksud di sini adalah suatu nilai atau bilangan tertentu atau bisa juga berupa sebuah konstanta (didefinisikan dengan instruksi EQU). Data segera merupakan data konstan, sedangkan data yang dipindahkan dari register adalah data berubah (variable). Mode pengalamatan immediate addressing sangat umum dipakai karena harga yang akan disimpan dalam memori langsung mengikuti kode operasi dalam memori. Dengan kata lain, tidak diperlukan pengambilan harga dari alamat lain untuk disimpan. Contohnya: MOV A, #20h. Dalam instruksi tersebut, akumulator akan diisi dengan harga yang langsung mengikutinya, dalam hal ini 20h. Mode ini sangatlah cepat karena harga yang dipakai langsung tersedia.
Keuntungan :
Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand
Menghemat siklus instruksi sehingga proses keseluruhanakan akan cepat
Kekurangan :
· Ukuran bilangan dibatasi oleh ukuran field
Contoh :
ADD 7 ; tambahkan 7 pada akumulator
Langganan:
Postingan (Atom)